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‡ Laboratoire des Physique de la Matière Condenśee, Universit́e de Picardie–Jules Verne, 33 rue
Sant-Leu, 80039, Amiens, France
§ Institute of Physics of Semiconductors, Prospekt Nauki, 45, 252650 Kiev, Ukraine

Received 4 September 1996, in final form 24 July 1997

Abstract. The order parameter, ferroelectric phase transition temperature, and critical con-
centrations of random-site electric dipoles, point charges and dilatational centres in disordered
ferroelectrics are calculated. The calculations are carried out by the random-field method with a
random-electric-field distribution function, allowing for nonlinear and spatial correlation effects.
Essential differences from the linear case are revealed. First, the aforementioned effects lead
to the transformation of the second-order phase transition into one of first order and vice versa
for α3 > 0 andα3 < 0 respectively, whereα3 is the third-order nonlinearity constant. Second,
for α3 > 0 the phase transition temperatureTc has a maximum as a function of the random-
field-source concentration; its maximal value appears to be larger than that in the mean-field
approximation. At the same time, forα3 < 0 the maximum is absent and theTc-value is smaller
than that in the linear case (i.e. atα3 = 0). This means that nonlinear and spatial correlation
effects enhance the long-range order in disordered ferroelectrics forα3 > 0 and inhibit it for
α3 < 0.

It is shown that the critical concentrations of electric dipoles, point charges and dilatational
centres are the same as in the linear case. The application of the theory developed to various
disordered ferroelectrics is discussed.

1. Introduction

Disordered ferroelectrics, such as the relaxors PbMg1/3Nb2/3O3 (PMN), PbSc1/2Nb1/2O3

(PSN), and Pb1−xLaxZr1−yTiyO3 (PLZT x/1− y/y), incipient ferroelectrics with off-centre
impurities, e.g. KTaO3:Li, Nb, Na, PbTe:Ge, and mixed systems of the KDP family,
attract much scientific attention due to the anomalies in the physical properties of these
systems. Their common feature is the existence of numerous random-field sources due to
substitutional disorder, unavoidable impurities, vacancies in anion and cation sublattices, etc.
The random fields, produced by material imperfections, are known to play a crucial role in
the properties of disordered ferroelectric and magnetic systems (see e.g. [1–3]). Hence, all
observable properties of such systems depend strongly on the random-field characteristics,
and the forms of their distribution functions in particular. For example, for disordered
magnetic systems the ranges of existence of the paramagnetic, ferromagnetic, spin-glass
and mixed ferromagnetic–spin-glass phases depend on the ratiosT/J andJ0/J [3], where
J0 andJ are respectively the position of the distribution function maximum and its width.
Qualitatively, the phase diagrams of disordered ferroelectrics have the same features, but,

0953-8984/97/4610237+12$19.50c© 1997 IOP Publishing Ltd 10237



10238 M D Glinchuk et al

quantitatively, the influence of the random electric fields may be stronger than for disordered
magnets due to larger number of these field sources in the material. Since defects are
distributed randomly in the host crystal lattice, their spatial correlations are of importance for
the random-electric-field distribution function. On the other hand, a nonlinear dependence
of the spontaneous polarization on the external electric field (dielectric hysteresis) is
a characteristic feature of both ordered and disordered ferroelectrics. This means that
nonlinear effects are also important for the systems under consideration. However, up to
now all of the calculations have been carried out only in the linear approximation—that is
within the framework of the statistical theory of the first order [1, 2, 4–6]. Such an approach
may be valid for systems with small enough coefficients of nonlinearity and/or random-field-
source concentrations. In the general case, however, the nonlinear and correlation effects
have to be taken into account. A method of distribution function calculation allowing for
both of these effects was proposed in [7].

In this paper we use the random-local-field method, developed earlier (see [8, 9] and
references therein). The comparison with other mathematical techniques for investigation of
disordered systems (the method of virial expansion of the inverse dielectric susceptibility,
the method of random mean fields, Monte Carlo numerical methods, percolation theory, etc)
as well as with results of classical works (e.g. [10]) can be found in the above-mentioned
references. The advantage of the random-local-field method lies in its comparative simplicity
and universality, due to it being based on a statistical physics approach. It can be applied for
arbitrary forms of random electric fields to real three-dimensional disordered ferroelectrics
outside the critical region. Note that this approach is more general than the mean-field
approximation, which can be obtained from our results as a special case.

This method is applied in the present work to the case of several random-field sources,
namely point charges, dilatational centres and electric dipoles. The temperature dependence
of the order parameter, the concentrational dependence of the ferroelectric phase transition
temperature, and the critical concentration of the random-field sources have been calculated.
The calculations incorporate the dependence of the aforementioned parameters on the
concentrations of point charges and dilatational centres as well as on the third-order
nonlinearity coefficientα3. It has been shown that when the magnitude of the nonlinear
coefficient is large enough, the results obtained are very different from those obtained within
the linear approximation [1]. In particular, the second-order phase transition transforms into
a first-order one, and a maximum in the dependence of the transition temperature on the
random-field-source concentration appears.

2. The random-field distribution function allowing for nonlinear and correlation
effects

The distribution function of a random fieldE can be represented in the form

f (E) = 〈〈δ(E −E(ri ))〉〉. (1)

Here the bar denotes averaging over spatial configurations of random-field sources,
and 〈〈· · ·〉〉 indicates averaging both over dipole orientations and over the random-field
distribution, so the distribution function is expressed in terms of itself in a self-consistent
manner.E(ri ) is the internal electric field induced by electric dipoles, point charges, and
other sources at the observation pointri , i.e.

Eγ (ri ) = εγ (ri )+
p∑

m=2

αmε
m
γ (ri ) (2)



Theory of phase transitions in disordered ferroelectrics 10239

and

εγ (ri ) =
∑
k

∑
j

εγ k(rij ) (3)

whereεγ k is theγ -component of the field, produced at the observation pointri by a source
of the kth type (e.g. dipoles, point charges, or dilatational centres) situated at the pointrj .
Note that the last term in equation (2) determines the nonlinear contribution of any power of
the internal fieldsεγ (r), allowing for both nonlinear and spatial correlation effects. Indeed
any nonlinear term in equation (2) can be rewritten in a form similar to that form = 2:

α2

[
N∑
j=1

ε2
γ (rij )+

N∑
l 6=j

εγ (rij )εγ (ril)

]
(4)

where the first and the second sums are respectively the nonlinear and spatial correlation
contribution, andN is the number of random-field sources under consideration.

In accordance with a recently proposed model [6], the sources of random fields are
supposed to be embedded into the material’s paraelectric phase (the host lattice);αm is the
coefficient of nonlinearity of this lattice with the dimension of inverse electric field to the
power (m − 1) (i.e., the dimension ofαm is inverse toE(m−1)), which characterizes the
corresponding contribution of the nonlinear term.

Rigorous calculation of the distribution function in the formF(E) = δ(E − E′(rij ))
with respect to equation (2) in the framework of the statistical theory approach yields the
following result for any electric field componentEα ≡ E [7]:

f (E) =
∫ ∞
−∞

f1(ε) δ

(
E − ε −

p∑
m=2

αmε
m

)
dε (5)

f1(ε) = 1

2π

∫ ∞
−∞

exp

(
iεt −

p∑
m=2

nkFk(t)

)
dt (6)

Fk(t) =
∫

d3r (1− exp(−itεk(r))) (7)

wheref1(ε) is the distribution function that takes into account only the linear term in (2)
(the distribution function of the first order). This means that spatial averaging inf1(ε) can
be carried out within the framework of the statistical theory of the first order, which gives
the exact solution for many types of random electric fields [11, 12].

In equations (5)–(7),nk and εk(r) are the concentration and electric field of thekth
type of source respectively. It is seen that only the integrand in equation (7) depends on
the source coordinates and electric dipole orientations due to the dependence ofεk(r) on
these parameters (see [1] for details). Thus thermal averaging over the dipole orientations
and over random fields can be fulfilled by substitution of

FTk (t) =
∫

d3r
〈〈

1− e−itεk(r)
〉〉

(8)

for equation (7).
Equations (6) and (8) determinef1(ε), calculated earlier in [1] for the case of two-

orientation electric dipoles, point charges, and dilatational centres, acting as the random-field
sources. It was obtained in the form

f1(E) = 1

2π

∫ ∞
−∞

exp[it (E − E0L)− n1B1|t | − n2B2|t |3/2− n3B3t
2] dt (9)

B1 = �0

9

1+ ν
1− ν p B2 = 32

15

(
πZe

2ε0

)3/2

B3 = 16π

15
r3
c

(
d∗

ε0r3
c

)2

.
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Here L = 〈〈d∗〉〉/d∗ and E0 = 4π(n3d
∗2)/ε0 are the order parameter (the number of

coherently oriented impurity electric dipoles) and the mean value of the electric dipole
random field (in energy units),d∗ = 1

3dγ (ε0−1) is the effective electric dipole moment,γ
andε0 are respectively the Lorentz factor and static dielectric permittivity of the host lattice,
n1, n2, andn3 are respectively the concentrations of dilatational centres, point charges, and
electric dipoles,Ze and�0 are the point defect charge and elastic moment, andp andν are
the host-lattice piezoelectric tensor component and Poisson coefficient respectively. Note
that equation (9) corresponds to the case of a Gaussian distribution function of random
electric fields induced by electric dipoles, i.e. to the case wheren3r

3
c � 1 (see [1] and

references therein).

3. Average values of the physical quantities

3.1.

In the general case, the average value of any physical quantityA(E) can be represented in
the form

Ā =
∫ ∞
−∞

f (E)A(E) dE. (10)

Substitution of (5) into (10) with further integration over dE gives

Ā =
∫ ∞
−∞

f1(ε)A

(
ε +

p∑
m=2

αmε
m

)
dε. (11)

Equation (11) makes it possible to calculate the average value of any physical quantity
with respect to nonlinear and correlation effects with the help of the distribution function
of the first order.

3.2.

One of the most important physical quantities which determines the main characteristics of
a disordered ferroelectric is the order parameterL. To calculate it we have to substitute〈l〉
(l ≡ d∗/|d|) for A(E) in equation (10), where〈· · ·〉 indicates thermal averaging over possible
dipole orientations (see [1] for details). In the case of two-oriention dipoles (lz = ±1,
lx = ly = 0) 〈l〉 = tanh(E/kT ), whereE ≡ Ez. With the help of equation (11) one obtains
for the order parameterLz ≡ L

L =
∫ ∞
−∞

f1(ε) tanh

[(
ε +

p∑
m=2

αmε
m

)/
kT

]
dε. (12)

Substitution of equation (9) into equation (12) and some simple transformations of the
integrand give

L = 1

π

∫ ∞
−∞

dε tanh

[(
ε +

∑p

m=2
αmε

m

)/
kT

] ∫ ∞
0

e−F(t) cost (ε − E0L) dt (13)

where

F(t) = n1B1t + n2B2t
3/2+ n3B3t

2.

In the linear case (αm = 0), equation (13) transforms into that derived in [1]. It is
seen that order parameter is self-consistently expressed in terms of itself, and is a function
of the temperature, concentrations and parameters of random-field sources, and host-lattice
characteristics.
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3.3.

The result of the calculation of equation (13) depends strongly on the form of the argument
of the tanh function. The latter can be simplified on the basis of the following symmetry
considerations. Consider a lattice with a centre of inversion in the paraelectric phase. In
this case the order parameter has to be an odd function of the electric field, i.e. the valuesm

in equation (13) are odd numbers. Retaining only the first nonlinear term in the argument
of the tanh function, one obtains

L = 1

π

∫ ∞
−∞

dε tanh[(ε + α3ε
3)/kT ]

∫ ∞
0

e−F(t) cost (ε − E0L) dt. (14)

Figure 1. The order parameter in the mean-field approximation for several values of the
dimensionless nonlinearity coefficientα0.

4. The order parameter, phase transition temperature, and critical concentration

4.1.

Let us first consider the order parameter in the mean-field approximation, where the width of
the distribution function is much less than its first moment, i.e. in equation (14)F(t)� E0L,
so that

1

π

∫ ∞
0

e−F(t) cost (ε − E0L) dt → δ(ε − E0L).

Substitution of thisδ-function into equation (14) gives the equation for the order parameter
within the mean-field approximation:

Lmf = tanh

[
Tcmf

T
(Lmf + α0L

3
mf )

]
(15)
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(a)

(b)

Figure 2. The phase transition temperature forα0 = 1 as a function of the concentration of
electric dipoles for different concentrations of (a) point charges and (b) dilatational centres. The
numbers near the curves correspond to the values ofµ (a) and of1 (b). The additional curve
corresponds to the linear case (α0 = 0, µ = 1 = 0).

whereE0 = kTcmf , Tcmf is the transition temperature in the mean-field approximation,
α0 ≡ α3E

2
0, andα0 is dimensionless. The temperature dependence ofLmf (equation (15))

is depicted in figure 1 forα0 = ±1. The linear case (α0 = 0) is represented also for the
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sake of comparison with nonlinear cases. It is seen that the second-order phase transition of
the linear case transforms into a phase transition of first order forα0 > 0 and is of second
order forα0 < 0. Note that for the sake of simplicity we have depicted a phase transition of
second order for the case whereα0 = 0; however,α0 < 0 corresponds to a phase transition
of first order in the linear case, i.e. nonlinear effects transform the first-order phase transition
into a second-order one.

It is seen that forα0 > 0 (α0 < 0) the mean-field order parameter is larger (smaller)
than that in the linear case (α0 = 0). Therefore, correlation effects strengthen (α0 > 0) or
weaken (α0 < 0) the long-range order induced by random-site electric dipoles. Estimations
have indicated that qualitatively the same behaviour and phase transition order change
are characteristic for the general case, described by equation (14). Indeed, as was shown
recently [7], at large enoughα3-values, the distribution functionf (E) has a sharp maximum
(α3 > 0) or minimum (α3 < 0) atE = E0L, so one can expect increasing or decreasing of
the phase transition order parameter.

Figure 3. The phase transition temperature forα0 = 5 versus the concentration of electric dipoles
for different concentrations of dilatational centres. The numbers near the curves correspond to
values of1, and the additional curve corresponds to the linear case (α0 = 0, 1 = 0).

4.2.

Formula (14) makes it possible to calculate the transition temperatureTc. For the phase
transition of second order, it is the temperature at which the order parameter appears. Putting
E −E0 = x in (14) and expanding the integrand nearT = Tc in the small parameterL up
to the first nonvanishing term, we find the following equation forTc:

Tc

Tcmf
= 1

π

∫ ∞
−∞

(1+ 3α0x
2) dx

cosh2((x + α0x3)/kTc)

×
∫ ∞

0
(costx) exp(−n1B1t − n2B2t

3/2− n3B3t
2) dt. (16)
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(a)

(b)

Figure 4. The phase transition temperature as a function of the concentrations of (a) point
charges and (b) dilatational centres for different values ofα0: 0.1 (curves 1), 1 (curves 2), and
5 (curves 3). The numbers near the curve families correspond to values ofλ−1.

Equation (16) determines the phase transition temperature for the cases in which, in
addition to electric dipoles, which induce ferroelectric long-range order, there are point
charges and dilatational centres, which tend to destroy long-range order. To obtain a
quantitative description of this process, equation (16) had been solved numerically for the
cases wheren1 = 0 (the random-field sources are electric dipoles and point charges) and
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wheren2 = 0 (the random-field sources are electric dipoles and dilatational centres). To
discover the influence of correlation effects in the systems with random-site electric dipoles
as the main sources of random electric fields, we solved (16) for the case wheren3 6= 0,
n1 = n2 = 0. The results of the numerical solution are depicted in figure 2 (α0 = 1), figure
3 (α0 = 5), and figure 4 (α0 = 0.1, 1, and 5) for different sets of dimensionless parameters
1 = (n1B1)/

√
n3B3, µ = (n2B2)/(n3B3)

3/4, andλ = E0/
√
πn3B3 =

√
15n3r3

c .
It is seen from figures 2 and 3 thatα0 increasing leads to a significant increase of the

value ofTc/Tcmf (compare the curves with those forα0 = 0 in figures 2 and 3). So nonlinear
and spatial correlation effects in the system of random-site and random-orientation electric
dipoles tend to order the system more strongly. Meanwhile, point charges and dilatational
centres destroy the long-range order and decrease the value ofTc/Tcmf (compare the curves
marked 0.1, 1, and 4 in figures 2 and 3) like in the linear case [1]. However, the appearance
of a maximum in theTc-curves, whereTc/Tcmf > 1, is a completely new feature, caused
by nonlinear effects. The fact thatTc/Tcmf > 1 for a certain range of values ofλ−1, µ,
and1 (see figures 2–4) may be the result of long-range order ‘amplification’ by nonlinear
effects. It is seen from equation (15) that one may considerE0(1+ α0L

2) as an effective
mean field, which is larger than that in the linear case,E0 ≡ kTcmf , in figures 1–4. For
the same reason, in the case whereα0 < 0, Tc/Tcmf < 1 for all of the values ofλ−1, µ,
and1. Calculations confirm this supposition. It is seen from the figures that the maximum
position is shifted towards smallerλ−1, i.e. to larger concentrations of electric dipoles with
increase in the concentrations of point charges or dilatational centres. So there is an optimal
concentration of electric dipoles at which the transition temperature has its maximal value.
It follows from figure 4 that this maximum is absent at small dipole concentrations (see the
curves forλ−1 = 0.8 (nr3

c ≈ 0.1). The maxima are also absent for smallα0-values (see the
curves marked ‘1’, whereα0 = 0.1). But maxima are clearly seen atα0 = 1 andα0 = 5
(curves ‘2’ and ‘3’ forλ−1 = 0.2582 andλ−1 = 0.15 respectively), their positions being
shifted towards larger values ofµ or 1 with increasingα0 at a constant value ofλ−1 .

4.3.

The value ofλ at whichTc = 0 corresponds to the critical concentration of electric dipoles
n3c, so for n3 < n3c there is no long-range order (L = 0), and only short-range order
(dipole glass) may exist (L = 0, L2 6= 0). The limit of equation (16) forTc → 0 leads to
the following equation for the critical concentration of electric dipoles:

2E0

π

∫ ∞
0

exp(−n1B1t − n2B2t
3/2− n3B3t

2) dt > 1. (17)

It is seen that this equation is independent of the coefficient of nonlinearity, and it is
exactly the same as in the linear case (see [1]). It can be easily seen from (17) that for
B1 = B2 = 0 long-range order can appear only forλ > 1. That is why we used 06 λ−1 6 1
for the calculations.

Note thatλ−1 = 0 (n3r
3
c → ∞) corresponds to the mean-field approximation for all

values ofµ and1. The critical concentrations of electric dipoles for arbitrary values of
n1 6= 0 andn2 6= 0 were calculated in [1]. In the same way one can introduce the critical
concentration of point charges,n2c, or dilatational centres,n1c, at whichTc = 0, so that for
n1 > n1c andn2 > n2c long-range order is completely destroyed, and only the dipole glass
state may exist. The values ofn1c andn2c for arbitrary concentrations of electric dipoles
were calculated recently with the help of equation (17) (see [6]).
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5. Discussion

5.1.

In the framework of a recently proposed model [6], any disordered ferroelectric is considered
as random-site electric dipoles, point charges, dilatational centres and other impurities and
defects, embedded in the paraelectric phase as a host lattice. In relaxors like PMN, all of
the ions were shown to be shifted from their equilibrium positions in the ideal perovskite
structure [13], the values and directions of their shifts being random values [14]. Since
this ideal structure can be supposed to be the PMN paraelectric phase, the shifted ions are
random-site electric dipoles in the system. Substitutional disorder (Nb5+ is substituted for
Mg2+ and vice versa) vacancies of lead and oxygen leads to a great number of randomly
distributed point charges, dilatational centres, and other imperfections. The latter may be
defect complexes like Nb5+(Mg2+)–V(Pb2+) or Mg2+(Nb5+)–V(O2−), where An+(Bm+)
is an An+ ion substituted for a Bm+ ion, and V(Ck+) is a vacancy for a Ck+ ion. Since
Nb dipoles were shown to be the sources of the system’s polar regions with the observed
polarization along [111]-type directions [13, 15], all other random-field sources tend to
destroy this ordering. On the other hand, in relaxors like PSN, the complexes Nb5+(Sc3+)–
V(Pb2+) and Sc3+(Nb5+)–V(O2−) are electric dipoles with orientations along [111]-type
and [100]-type directions respectively. Since the direction of the polarization in PSN is
known to be along a [100]-type direction [16], impurity dipoles with the same orientations
may be considered as sources of long-range order enhancement rather than its destruction.

In the PLZT system, Ti, Zr, and Pb ions are known to be shifted from their equilibrium
positions in the PZT paraelectric phase, i.e. they are electric dipoles; meanwhile La3+

ions are point charges or dilatational centres, which destroy ferroelectric long-range order,
familiar for PZT. Some other sources of random electric fields in PLZT can be considered
also [6].

The simplest disordered systems are incipient ferroelectrics with off-centre impurity
ions. These materials (e.g. KTL) can be considered as random-site electric dipoles (e.g. off-
centre Li+) in a KTaO3 lattice. Vacancies of oxygen and potassium, and some unavoidable
impurities (e.g. iron ions [17]) are the sources of random fields which tend to destroy
long-range order, induced by off-centre ions [1, 5].

Therefore, in all of the aforementioned disordered ferroelectrics, the number of random-
field sources can be large, so nonlinear and correlation effects can be very important. On the
other hand, these effects are known to be large in the vicinity of the dielectric susceptibility
maximum. More precisely, the coefficientsαm in equation (2) can be estimated from the
consideration of the Landau expansion of the host-lattice free energy:αm ∝ α0

mε0
m, where

α0
m is the coefficient in front of themth power of the polarization in the Landau expansion.

Thus, the parameterα0 = α3E
2
0 ∼ α0

3(n
2
3ε

3
0), i.e. it is proportional to the concentration

of the impurity electric dipoles and the dielectric permittivity of the host lattice; the latter
should be divergent at the host-lattice phase transition points. This means that nonlinear and
correlation effects have to be larger both near theε0-maximum and in systems with large
numbers of electric dipoles. Therefore the peculiarities of the phase diagrams, described in
previous sections, must depend on the temperature and the concentration of electric dipoles
in all of the aforementioned disordered systems.

The most prominent features of the nonlinear and correlation effects are the changing
of the order of the phase transition (see figure 1), and the appearance of a maximum in
Tc/Tcmf for α3 > 0, i.e. the existence of an optimal concentration of electric dipoles (see
figures 2 and 3) or point charges and dilatational centres (see figure 4) at which the ‘degree
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of ordering’ is maximal. Note that the origin of these maxima may be connected with the
transformation of the second-order phase transition into a first-order one. Contrary to the
case forα3 > 0, in the systems withα3 < 0 one can expect the destruction of long-range
order with increase of|α0|.

5.2.

The transformation of the second-order phase transition into a first-order one with reduction
of the temperature was observed earlier for KTL with 3.5% and 8% Li+ ions [18]. Since
for KTaO3 ε0 increases with decreasing temperature andα0

3 > 0 [19], one can assume that
this phenomenon is a manifestation of nonlinear and correlation effects. Unfortunately, it is
impossible to compare our theory and experiment for KTL with 3.5% and 8% of Li, because
there are no quantitative measurements available for 8% Li ions (see [18]). It follows from
the theory developed that at larger concentrations the phase transition order transformation
in KTL may occur at higher temperatures, whereε0 is smaller. Recently a sign change
of α0

3 near the dielectric permittivity maximum was observed for PMN single crystal in
investigations of the dependence of the nonlinear dielectric permittivity on an external dc
electric field [20]. This experiment seems to provide direct confirmation of our theoretical
predictions.

In the Pb1−xLaxZr0,65Ti0,35O3 system the transition temperature from the paraelectric to
the ferroelectric phase in the host PZT lattice is known to beTd = 640 K [21]. Thus for
T < 640 K, α0 has to decrease with reduction in the temperature. Perhaps this fact is the
main reason for the fairly good quality of the description of theTc(x) dependence obtained
recently within the linear approximation [6].

To obtain a quantitative description of the peculiarities of the phase diagram and
properties of relaxor ferroelectrics like PMN and PSN within the framework of random-field
theory within the linear or nonlinear approximation, one has to know the concentrations
of electric dipoles and other random-field sources, and their characteristics, as well as
the host-lattice parametersb, ε0, rc, Td , etc. Unfortunately, the available data are very
sparse for these relaxors. Qualitatively, one can suppose that systems like PSN are more
ordered than PMN due to the smaller magnitudes of the random fields of point charges there
(ZNb − ZSc < ZNb − ZMg; ZA is the A-ion charge) and the existence of additional electric
dipoles such as Sc3+(Nb5+)–V(O2−) with orientations along [100] directions. Another
possible type of dipole pair, Nb5+(Sc3+)–V(Pb2+), with orientation along a [111]-type
direction, has to compete with the system’s tendency to order along [100] [4], i.e. these
dipoles will destroy the polarization of PSN along the [100] direction. That is why
annealing of PSN in lead vapour makes the material more ordered [22]. For a quantitative
description of disordered ferroelectric phase transitions and peculiarities of properties within
the framework of random-field theory, additional experimental investigations of these
materials are extremely desirable.
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